FUNCTIONAL ANALYSIS OF INDUSTRIAL CLUSTERS IN MALAYSIA 28 – 29 September 2017 Dr. Norhayati Shuja' Bahagian Metodologi dan Penyelidikan "MEMACU GENERASI ANALITIK KE ARAH MENDEPANI FENOMENA STATISTIK GLOBAL" #### **Outlines** #### Introduction - Industry cluster is a group of industries that has strong complementary linkages. - Industries that have strong supply and buyer relationship will provide better information of inter-industry dependence. #### Introduction - There have been several empirical studies in the field of industrial clustering. - However, they differ not only in definitions used and areas studied, but also in the objectives and methodology. - This study employed Cluster Analysis for grouping industries based on input-output linkages which has been applied for many countries. - Cluster analysis is useful in analyzing which sectors are strongly connected to each other. #### Objective - The objective of this paper; - to identify the national industry clusters in Malaysia by examining the inter-industry selling and purchasing relationship based on the Malaysia's 2010 Input-Output table using cluster analysis approach. #### Literature Review | Researcher | Study | Data | Method(s) | Findings | |---|---|--|--|---| | Stan Czamanski (Papers in Regional Science, 1971) | i. Developed a technique for identifying industrial clusters with strong internal and weak external flows. ii. Verified the hypothesis that in an urban agglomeration, the ancillary links with supplier based on outputs. iii. Ascertained the minimum size of Input-Output tables usable for sophisticated regional analysis. | I-O table of the US for 1958 (77 x 77) and 1963 (85 x 85) The 1959 Philadelphia I-O table (89x89) The 1963 Washington I-O table (54x54) The west Virginia (48x48) The 1960 Nova Scotia (58x58) | Multivariat e analysis. Calculate the eigenvalu es of the R matrix. The R matrix is the matrix that consists of the highest of the four correlation coefficient s. | Multivariate analysis may be a useful tool for analyzing linkages existing in regional economies. | #### Literature Review | Researcher | Study | Data | Method(s) | Findings | |---|---|---|--|--| | Joel Bergman, Peter Greenston & Robert Healy (Journal of Urban Studies, 1972) | Described set of industrial clusters and discuss alternative methods of defining industrial clusters. | The 1963 employment data of 144 manufacturing activities and 42 non- manufacturing activities. | Factor
analysis | The grouping of industries with similar location pattern was identified. The 186 industries resulted in 42 clusters. | | Howard
Roepke,
David Adams
& Robert
Wiseman
(Journal of
Regional
Science,
1974) | Identifying functually related groups of industries. Testing the feasibility of the approach. | Input-output table of 1965 for Canadian Province of Ontario. A 44 by 44 matrix of interindustry product linkages. | Factor
analysis,
R-mode &
Q-mode
factoring | The factor analysis of input-output data may prove to be a technique of value in both spatial and aspatial analysis. | | Joel Bergman, Peter Greenston & Robert Healy (Journal of | Extended their studies using a data base which consist of 480 industrial classification. | The 1965 employment data in each of 480 activities in each of 311 metropolitan areas | Hierarchic
al
clustering
analysis | The clustering is quite different from the Standard Industrial Classification (SIC), except at the most aggregated level. Revealed 40 groups of industries | #### Literature Review | Researcher | Study | Data | Method(s) | Findings | |--|---|--|--|--| | Edward J. Feser & Edward M. Bergman (Journal of Regional Studies, 2000) | Suggested a means of using detailed information on national interindustry linkages to identify existing and potential clusters in US. | Detailed 1987
benchmark US
Input-Output
table. | Factor
analysis | A national set of benchmark or template technological clusters effectively represent strategically important alignments of underlying detailed sectors. | | Edward W. Hill & John F. Brennan (Economic Development Quarterly, 2000) | Identified the industries in which a region has its greatest competitive advantage. | 194 industries in the Cleveland-Akron (Ohio) consolidated metropolitan area. | Combining cluster and discrimina nt analysis | 5 of 10 industry clusters clearly met the definition of having competitive advantage. | | Edward Feser
(Regional
Economies
Applications
Laboratory,
2005) | Developed an alternative methodology for identifying benchmark value chain clusters | Benchmark
Input-Output
Accounts of
the US, 1997 | Czamanski
four
correlation
s & Factor
analysis | The use of more sophisticated clustering algorithm separates strong and weak linkages with greater precision. The clusters appear to correspond to basic industry. | The identification of linkages and industrial clustering involve four stages. Stage 1 Calculate input and output coefficient based on I-O transaction matrix, 120 industries by 120 industries Stage 2 Calculate four pairwise linkage ratios, r, for each pair of industries Stage 3 Produce R_{max} matrix by selecting the maximum value of R. Set linkage threshold at 0.02 for purchases and 0.01 for sales. Stage 4 Identify core cluster by using Ward's hierarchical clustering algorithm - Calculate the input and output coefficients of an individual industry based on I-O transaction matrix, 120 industries by 120 industries. - Obtain the forward and backward linkages based on input and output coefficient matrix. $$x_{ij} = \frac{z_{ij}}{P_j} \qquad y_{ij} = \frac{z_{ij}}{S_i}$$ Where, - $P_{\scriptscriptstyle j}$ total purchases by industry j - S_i total sales by industry i - z_{ij} value of purchases by industry j from industry i - x_{ij} ratio of purchases by industry j from industry i to the total purchases by industry j - y_{ij} ratio of sales by industry i to industry j to the total sales by industry i Calculate four pairwise linkage ratios, r, for each pair of industries. $r(x_i,x_j)$: industry i and industry j are correlated by having similar purchasing patterns $r(y_i,y_j)$: industry i and industry j are correlated by having similar selling patterns $r(x_i,y_j)$: industry i has a purchasing pattern which is similar as industry j's selling pattern $r(y_i,x_i)$: industry i has a selling pattern which is similar as industry j's purchasing pattern Stage 3 Find the strongest linkages among the purchases and sales coefficients for each pair of industries. $$I_{ij}^{SS} = S_i \cap S_j, U_{ij}^{SS} = S_i \cap S_j \quad I_{ij}^{BB} = B_i \cap B_j, U_{ij}^{BB} = B_i \cap B_j$$ $$I_{ij}^{SB} = S_i \cap B_j, U_{ij}^{SB} = S_i \cap B_j \quad I_{ij}^{BS} = B_i \cap S_j, U_{ij}^{BS} = B_i \cap S_j$$ I_{ij}^{SS} : industries that are selling to both industry i and industry j I_{ij}^{BB} : industries that are purchasing from both industry i and industry j $I^{\mathit{SB}}_{\mathit{ij}}$: industries that are selling to industry i and buying from industry j I_{ij}^{BS} : industries that arebuying from industry i and selling to industry j $U_{\it ij}^{\it SS}$: a group of suppliers to either industry $\it i$ or industry $\it j$, or both $U^{\mathit{BB}}_{\mathit{ij}}$: a group of buyers from either industry i or industry j , or both $U^{\mathit{SB}}_{\mathit{ij}}$: a group of suppliers to industry i and buyers from industry j $U^{\mathit{BS}}_{\mathit{ij}}$: a group of buyers from industry i and suppliers to industry j Some industries purchase intermediate input from industry i (j) and supply output to industry j (i) Calculate the R measures, a linkage threshold, $\alpha = 0.02$ for purchases and 0.01 for sales are assigned to industry i and industry j. $$oxed{R_{ij}^{SS} = rac{I_{ij}^{SS}}{U_{ij}^{SS}}, R_{ij}^{BB} = rac{I_{ij}^{BB}}{U_{ij}^{BB}}, \;\; R_{ij}^{SB} = rac{I_{ij}^{SB}}{U_{ij}^{SB}}, R_{ij}^{BS} = rac{I_{ij}^{BS}}{U_{ij}^{BS}}}$$ R_{ij}^{SS} : ratio of the number of common suppliers to industries i and j over the total number of suppliers to industries i and R_{ij}^{BB} : ratio of the number of common buyers to industries i and j over the total number of buyers to industries i and j R_{ij}^{SB} & R_{ij}^{BS} : measures of second-tier of linkages between industries i and j. If the ratio of R_{ij}^{SS} (R_{ij}^{BB}) equals to 1 or 0, then industry i and j have the same supplying (buying) pattern. Selecting the maximum of the four R measures produces a new matrix (R_{max} matrix) $$R_{ij} = R_{ji} = \max[R(x_i, x_j), R(y_i, y_j), R(x_i, y_j), R(y_i, x_j)]$$ where, the x and y values are inter-industrial purchases and sales coefficients respectively Identify core cluster by using Ward's hierarchical clustering algorithm. - The hierarchical clustering technique using the Ward's method and applying squared Euclidean Distance as the distance or similarity measure to the R_{max} matrix was carried out to identify the clusters. - Ward's method uses an analysis of variance approach to evaluate the distances between clusters. - The cluster membership was assessed by calculating the total sum of squared deviations from the mean of a cluster. - The table presents part of the agglomeration schedule for the cluster analysis performed for the Malaysia Input-Output Table for 2005 (the final 24 of all 119 stages). - There are three possible solutions: 12 clusters, 10 clusters and 3 clusters with a large increase in the agglomeration coefficients at the 118th, 111th, and 109th stages. | 1 | | | | | | |---|---|--------------------------------------|------------------------------|--|--| | | Stage 96 | No. of
Clusters
in
Solution | Agglomeration
Coefficient | Slope (a) Percentage Change in Agglomeration Coefficient 2.203 | Acceleration (b) Percentage Change in Slope Coefficient -1.934 | | | 97 | 23 | 74.359 | 2.203 | -1.238 | | | | 22 | | | | | | 98 | | 75.967 | 2.162 | 643 | | | 99 | 21 | 77.630 | 2.189 | 1.277 | | | 100 | 20 | 79.379 | 2.252 | 2.863 | | | 101 | 19 | 81.185 | 2.275 | 1.013 | | | 102 | 18 | 83.091 | 2.349 | 3.241 | | | 103 | 17 | 85.236 | 2.581 | 9.894 | | | 104 | 16 | 87.394 | 2.532 | -1.899 | | | 105 | 15 | 89.602 | 2.526 | 250 | | | 106 | 14 | 92.119 | 2.810 | 11.245 | | | 107 | 13 | 94.818 | 2.930 | 4.283 | | | 108 | 12 | 97.544 | 2.874 | -1.902 | | | 109 | 11 | 100.538 | 3.070 | 6.794 | | | 110 | 10 | 103.580 | 3.026 | -1.435 | | | 111 | 9 | 106.972 | 3.275 | 8.257 | | | 112 | 8 | 111.070 | 3.831 | 16.955 | | | 113 | 7 | 116.004 | 4.442 | 15.945 | | | 114 | 6 | 121.513 | 4.749 | 6.927 | | | 115 | 5 | 128.287 | 5.575 | 17.383 | | | 116 | 4 | 135.993 | 6.007 | 7.751 | | | 117 | 3 | 143.993 | 5.883 | -2.063 | | | 118 | 2 | 155.470 | 7.970 | 35.481 | | | 119 | 1 | 185.260 | 19.161 | 140.406 | | 1 | (a) The clone coefficient of the agglomeration schedule is the percentage | | | | | - (a) The slope coefficient of the agglomeration schedule is the percentage change in the agglomeration coefficient given in the third column. - (b) Acceleration is the change in the slope of the agglomeration coefficient, calculated as the percentage change in the number contained in the fourth column. - The percentage change of the slope and acceleration is also high at the three stages. - Among the three clusters, the 12-cluster is more homogeneous based on the characteristics of the industries. - The table shows the 3, 10, and 12-cluster solutions for the 120 industries. - The heterogeneity of the industry classification depends on the size of the clusters. - Reading from right to left, the industrial clusters get more and more heterogeneous. - The homogeneity of the industrial clusters depends on the size of the cluster solution. | | Industry | | |------------------------------|--------------------------------|-----------------------------| | Paddy | Fruits | Flower Plants | | Food Crops | Rubber | Poultry Farming | | Vegetables | Oil Palm | Forestry and Logging | | Other Agriculture | Fishing | Other Food Processing | | Other Livestock | Dairy Production | Wine and Spirit | | Meat and Meat Production | Bakery Products | Soft Drink | | Leather Industries | Confectionery | Tobacco Products | | Soap, Perfumes, Cleaning & | Preservation of Fruits and | | | Toilet Preparations | Vegetables | | | Highway, Bridge and Tunnel | Private Non-Profit Institution | | | Operation Services | Ownership of Dwellings | | | Crude Oil and Natural Gas | Other Mining and Quarrying | Stone Clay and Sand | | Metal Ore Mining Fertilizers | Fertilizers | Quarrying | | Oils and Fats | Motorcycles | Rubber Gloves | | Petroleum Refinery | Research and Development | Rubber Products | | General Purpose Machinery | Rubber Processing | reader Frances | | Preservation of Seafood | Electrical Machinery and | Electric Lamps and | | Industrial Machinery | Apparatus | Lighting Equipment | | Grain Mills | Measuring, Checking & | Medical, Surgical and | | Animal Feeds | Industrial Process | Orthopaedic Appliance | | Recycling | Equipment | Other Electrical Machine | | Watches and Clocks | Optical Instruments and | Insulated Wires and Cab | | Domestic Appliances | Photographic Equipment | Special Purpose Machine | | Yarn and Cloth | Wearing Apparel | Printing | | Finishing of Textiles | Footwear | Tyres | | Other Textiles | Publishing | 1 1103 | | Sawmilling and Planning of | Other Chemicals Product | Sheet Glass and Glass | | Wood | Other Transport Equipment | Products | | Veneer, Sheets, Plywood, | Plastics Products | Basic Precious and Non- | | Laminated & Particle Board | Cement, Lime and Plaster | Ferrous Metals | | Builders' Carpentry and | Concrete & Other Non- | Pharmaceuticals, | | Joinery Joinery | Metallic Mineral Products | Chemicals & Botanica | | Iron and Steel Products | Basic Chemicals | Product Product | | Wooden and Cane Containers | Other Manufacturing | Clay and Ceramic | | Other Wood Products | Paints and Varnishes | Structural Metal Product | | Paper and Paper Products and | Castings of Metals | Structural Metal Froduct | | Furniture | Castings of Metals | | | Office, Accounting and | Other Fabricated Metal | Electricity and Gas | | Computing Machinery | Products | Waterworks | | Semi-Conductor | TV, Radio Receivers & | Ships & Boats Building, | | Devices, Tubes and Circuit | Transmitters & Associated | Bicycles & Invalid | | Boards | Goods | Carriages | | Motor Vehicles | | | | Residential | Civil Engineering | | | Non Residential | Special Trade Works | | | Restaurants | Amusement and | Other Public | | Computer Services | Recreational Services | Administration | | Water Transport | Banks | Other Financial Institution | | Air Transport | Insurance | | | Wholesale and Retail Trade | Land Transport | Professional | | Financial Institution | Other Transport Services | Business Services | | Public Administration | Port and Airport Operation | Education | | Accommodation | Services | Rental and Leasing | | Accommodation | | | | Health | Communication | Other Private Services | Functional Links among Industries in Cluster 1 0.3 \le \le \le 0.4 \\ 0.4 \le \le \le 0.5 \\ 0.5 \le \le \le \le \le \le 0.6 \\ 0.6 \le \le \le \le 0.7 - The relationship among the industries within a cluster is shown - The structures of industrial clusters have strong correlation and inter-dependent relationship among industries. The directions of arrowheads denote the inputoutput relationship among industries, while the type of line denotes the strength of the supplier-buyer relationship. The correlation coefficient of industries in which the value exceeds 0.3 is displayed in the figures. #### Functional Links among Industries in Cluster 2 Functional Links among Industries in Cluster 3 #### Functional Links among Industries in Cluster 11 #### Conclusion - Twelve (12) distinct industrial clusters were identified. - Industries within a cluster have strong selling and purchasing relationships. - This study is the first attempt to explore the similarities in selling and purchasing patterns of the industries in Malaysia using Input-Output table. - Further research could include regional level data to identify industrial driver for each region. # Thank You