

N.Rajkumar a/I V.Nagarethinam

Methodology & Research Division

Nur Hidaah Mahamad Rappek

Economic Indicator Division

OUTLINE

- O1 INTRODUCTION
- LITERATURE REVIEW
- **METHODOLOGY**
- 04 FINDINGS

- In the developed word, the model tools for calculation Gross Domestic Product (GDP) estimates are based on quantitative time series data which include indicators that significantly determine GDP development
- Result of BTS is published in the form of net balance and confidence indicators (CI) conveying the expectations of economic entities over the next three months
- Confidence Indicator: short term indicator which summarize the overall view of business situation in various sectors in Malaysia
- ➤ The CI is computed as average of the net balance for selected variables
- The Leading Index (LI) measures anticipation of the overall economic activity in the months ahead. The index tell us where the economy is going.
- As a result, they can be an important source of information for computing flash estimates or short-term predictors for the development of macroeconomic.

LITERATURE BEVIEW

i. Jan Haluska (2006)

- -Present the methodological approach and econometric type model relationships that use economic sentiment indicator (ESI) to represent GDP development
- -ESI can be considered a statistically significant indicator of GDP development and it may be used to construct model relationships for flash estimates of GDP

ii. Annabelle Mourougane and Moreno Roma (2002)

- Investigate the usefulness of the European Commission confidence indicators (CI) in forecasting real GDP growth rates in the short-run in selected Euro area countries (Belgium, Spain, Germany, France, Italy and the Netherlands) which account for almost 90% of the euro area
- Estimate a linear relationship between real GDP and CI and compared the forecasting performance of the estimated models with a benchmark ARIMA model
- Generally CI can be useful in forecasting real GDP growth rates in the short run in Belgium, Germany, France, Italy and Netherlands

LITERATURE REVIEW (CONT.)

iii. Vit Posta and Zdenek Pikhart (2012)

- Perform a quantitative analysis of the possibilities of Sentiment Economic Indicator based on the joint harmonized EU programme of business and consumer surveys to forecast quarterly GDP growths as a result of the publication lag of the data on GDP
- Construct ARMAX models to capture the relationship between quarterly changes in GDP and the Sentiment Economic Indicator.

v. Martina Karlsson and Helen Orselius (2014)

- Examine Swedish indicators and observe if they are stable, and provide accurate, reliable and consistent signals in relation to GDP growth
- -Ten indicators within the categories financial, survey-based and real economy indicators are selected
- -The statistical tests include Correlation, Cross-correlation and Simple Linear Regression, an interaction term is also included to account for financial crisis

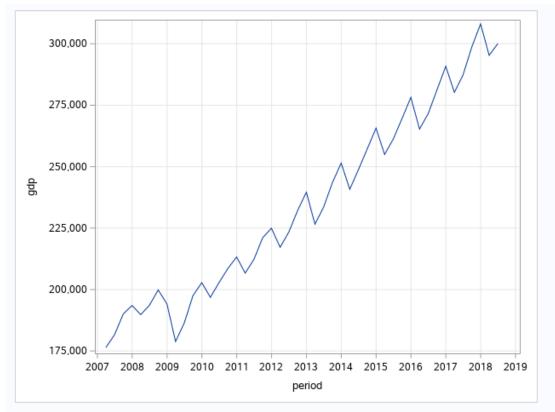
METHODOLOGY

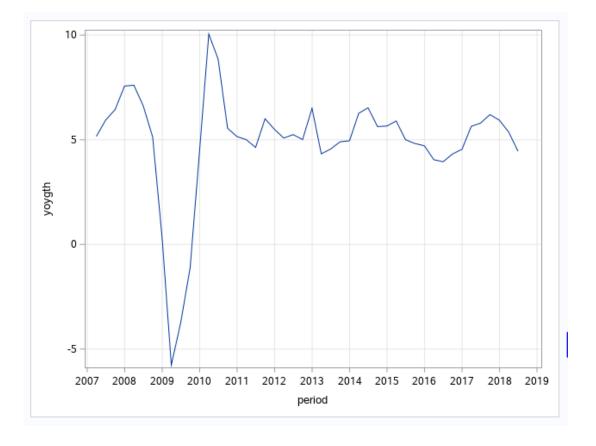
Data source was obtain from DOSM

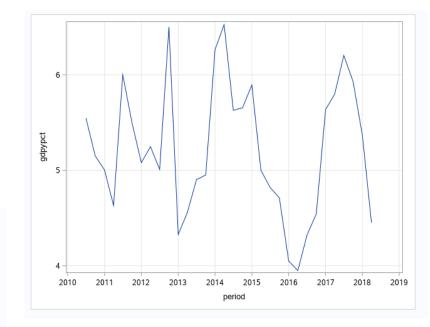
GDP

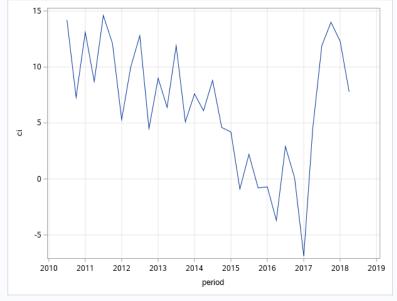
CI

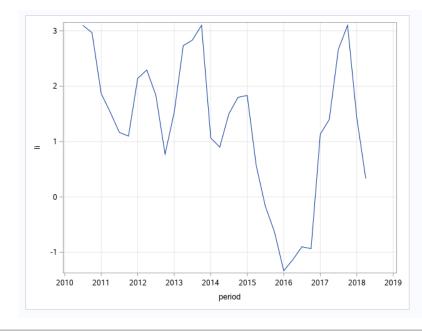
LI


Q3:2010 - Q2:2018

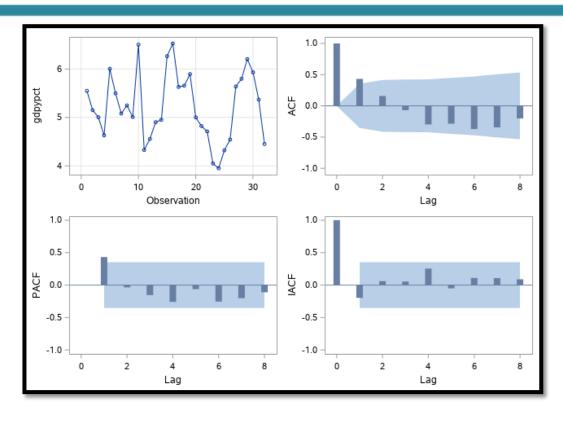

- SAS (and R) was used to develop model
- ARIMA Model
- ARIMAX model
- Period of forecast = 4 head & period of hold back = 4







Q3:2010 - Q2:2018



FINDINGS

Suggested model ARIMA (1,0,0)

Augmented Dickey-Fuller Unit Root Tests							
Туре	Lags	Rho	Rho Pr <rho f="" pr="" pr<tau="" tau="">I</rho>				
Zero Mean	0	-0.4920	0.5654	-0.63	0.4343		
	1	-0.2926	0.6100	-0.46	0.5041		
	2	-0.2181	0.6207	-0.37	0.5421		
Single Mean	0	-17.0305	0.0113	-3.24	0.0264	5.31	0.0381
	1	-18.2087	0.0073	-2.80	0.0702	3.93	0.1014
	2	-30.1184	0.0001	-2.85	0.0630	4.08	0.0924
Trend	0	-17.0486	0.0672	-3.19	0.1040	5.13	0.1912
	1	-18.2725	0.0458	-2.76	0.2237	3.86	0.4308
	2	-31.1993	0.0003	-2.83	0.1973	4.11	0.3834

auto.arima(data2\$gdpypct)

Series: data2\$gdpypct

ARIMA(1,0,0) with non-zero mean

Coefficients:

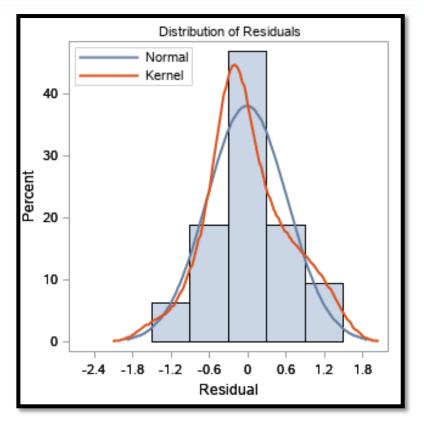
ar1 mean

0.4386 5.2136

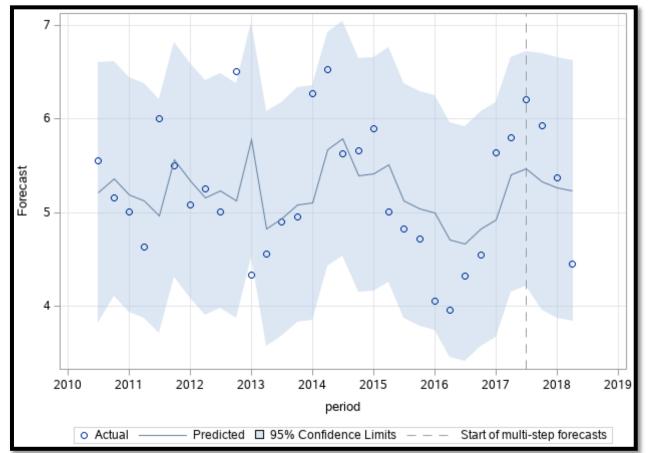
s.e. 0.1586 0.1904

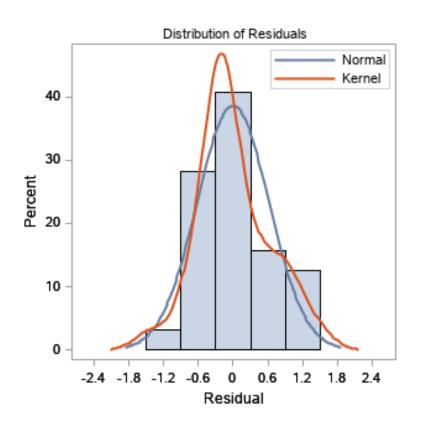
sigma^2 estimated as 0.4086: log

likelihood=-30.16

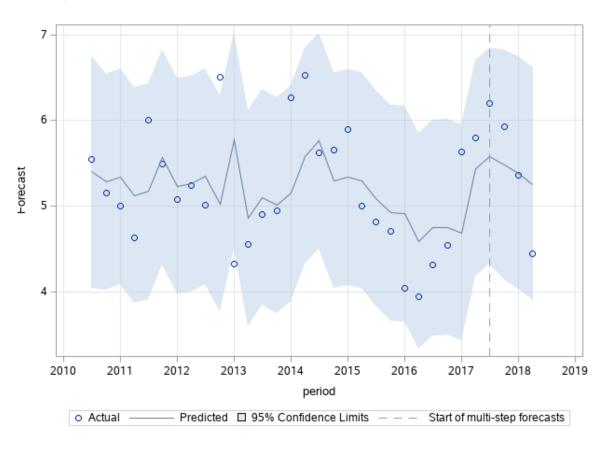

AIC=66.32 AICc=67.18 BIC=70.72

Maximum Likelihood Estimation					
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	5.21363	0.19614	26.58	<.0001	0
AR1,1	0.43859	0.16659	2.63	0.0085	1
	Constant	Estimate	2,9289	00	
	Estimate	0.40858			
	Std Error Estimate		0.63920	07	
	AIC		64.3187	75	
	SBC	SBC		22	
	Number o	f Residuals	3	32	
	Correlation	s of Paramet	er Estima	ites	
	Parameter	M	U AF	R1,1	
	MU	1.00	0 -0.	061	
	AR1,1	-0.06	1 1.	000	

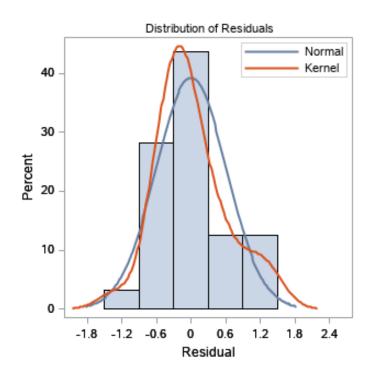


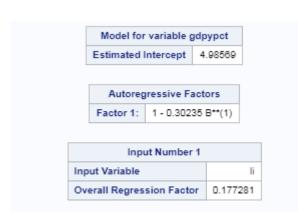

	Forecasts for variable gdpypct							
Obs	Forecast	Std Error	95% Confid	ence Limits	Actual	Residual		
30	5.4698	0.6392	4.2170	6.7226	6.2033	0.7335		
31	5.3260	0.6980	3.9580	6.6940	5.9302	0.6043		
32	5.2629	0.7087	3.8738	6.6520	5.3887	0.1038		
33	5.2352	0.7108	3.8421	6.6283	4.4514	-0.7838		

ARIMAX - CI

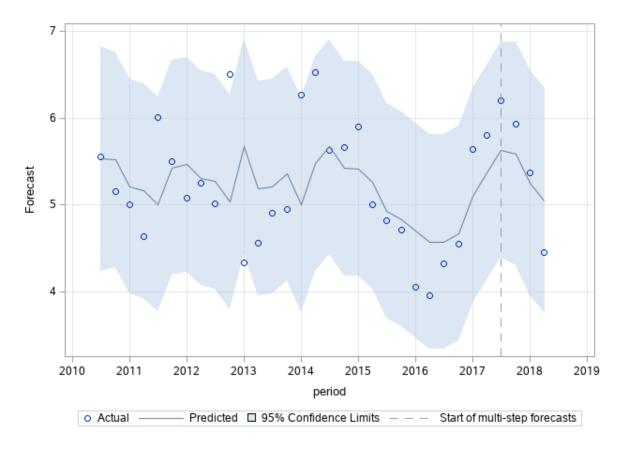


Constant Estimate	3.174856
Variance Estimate	0.411291
Std Error Estimate	0.641319
AIC	65.37973
SBC	69.77694
Number of Residuals	32


	Forecasts for variable gdpypct						
Obs	Forecast	Std Error	95% Confid	ence Limits	Actual	Residual	
29	5.5819	0.6413	4.3249	6.8388	6.2033	0.6214	
30	5.4856	0.6841	4.1448	6.8264	5.9302	0.4448	
31	5.3882	0.6898	4.0362	6.7401	5.3867	-0.0215	
32	5.2558	0.6906	3.9023	6.6093	4.4514	-0.8043	



ARIMAX - LI



Constant Estimate	3.478273
Variance Estimate	0.397565
Std Error Estimate	0.630528
AIC	64.24116
SBC	68.63837
Number of Residuals	32

	Forecasts for variable gdpypct						
Obs	Forecast	Std Error	95% Confid	ence Limits	Actual	Residual	
30	5.6289	0.6305	4.3931	6.8647	6.2033	0.5744	
31	5.5868	0.6587	4.2957	6.8779	5.9302	0.3434	
32	5.2554	0.6612	3.9594	6.5514	5.3667	0.1113	
33	5.0495	0.6615	3.7530	6.3459	4.4514	-0.5981	

INDINGS (cont.)

Model	AIC	MAPE	MAD
ARIMA	64.32	10.39	0.56
ARIMAX-CI	65.38	9.00	0.47
ARIMAX-LI	64.24	7.64	0.26

20 OCT

18 - 23 AUG 2019

JULY 2020 (ACTUAL MYCENSUS)

JAN - DEC 2019

MAR - SEPT 2019

2015 - 2030

#StatsMalaysia | #MyStatsDay | #ISIWSC2019 | #MyCensus2020 | #HIES2019 | #MyRetailCensus2019 | #LeaveNoOneBehind

