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Abstract

Gross Domestic Product (GDP) per capita is often used as an indicator of
standard of living in an economy. GDP per capita observed over the years can
be modelled using time series models. A new class of Generalized Autoregres-
sive Moving Average (GARMA) namely GARMA (1, 2;δ, 1) has been intro-
duced in the time series literature to reveal some hidden features in time series.
In this paper, GARMA (1, 2;δ, 1) model and ARMA (1, 1) model are fitted
in the GDP growth data of Malaysia which has been observed from 1955 to
2009. The parameter estimation methods considered include the Hannan Ris-
sanen Algorithm (HRA), Whittle Estimation (WE) and Maximum Likelihood
Estimation (MLE). Point forecasts also have been done and the performance
of GARMA (1, 2; δ, 1) and ARMA (1, 1) and the estimation methods are dis-
cussed.
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1 Introduction

Time series is a set of well-defined data items collected at successive points at uni-
form time intervals (Prapanna et al. (2014)). The goal of time series analysis is
to predict a series that contains a random component. If this random component
is stationary, then we can develop powerful techniques to forecast its future values
(Brockwell and Davis (2002)). Forecasting is important in the fields like finance,
meteorology, industry and so forth (Chen et al. (2014)).

It is known that the modelling of time series with changing frequency compo-
nents is important in many applications, especially in financial data. These type of
time series cannot be identified using the existing standard time series techniques.
However, one may propose the same classical model for all these cases. This may
produce poor forecast values (Peiris et al. (2004)). Due to that, Peiris introduced a



new class of Autoregressive Moving Average (ARMA) type models with indices
called Generalized ARMA (GARMA) to describe data with different frequency
components (Peiris (2003)).

Firstly, Peiris has introduced Generalised Autoregressive (GAR(1)) model, and
followed by the Generalised Moving Average (GMA(1)) model (Peiris (2003), Peiris
et al. (2004)). More recently, the GARMA (1, 1; 1,δ) model has been considered
(Pillai et al. (2009)). In addition, Shitan and Peiris studied the behaviour of the
process
GARMA(1, 1; δ, 1) (Shitan and Peiris (2011)).

The GARMA (1, 1; 1,δ) and GARMA(1, 1;δ, 1) models can be further gen-
eralised as GARMA (1, 1;δ1, δ2) and some properties of this model have been
established (Pillai et al. (2012)). All these models have been shown to be useful in
modelling time series data. It is interesting to note that the GARMA model can be
further expanded to GARMA (1, 2;δ, 1).

These GARMA models give a better forecast compared to traditional ARMA
models. This will be supported by the modelling of the Gross Domestic Product per
capita of Malaysia.

The Gross Domestic Product (GDP), the Gross National Product (GNP) and the
Net National Income (NNI), all are indicators of a country’s economic power. Nev-
ertheless, in almost all the countries, the GDP per capita is used as a benchmark for
measuring the nation’s economic progress. GDP is the measure of the market value
of all goods and services produced within a country during a specified period. GDP
per capita is the share of individual members of the population to the annual GDP.
It is calculated by dividing real or nominal GDP by the number of population per
year. GDP per capita is an indicator of the average standard of living of individual
members of the population. An increase in the GDP per capita signifies national
economic growth. The GDP per capita observed over years can be modelled using
time series models.

The objective of this paper is to compare the performance of the ARMA (1,
1) model and GARMA (1, 2;δ, 1) model besides comparing the three estimation
methods. In Section 2, we illustrate the applications of ARMA (1, 1) and GARMA
(1, 2;δ, 1) modelling to GDP data set. Finally, the conclusions are drawn in Section
3.

2 Application of GARMA Modelling to GDP data set

In this section, ARMA (1, 1) and GARMA (1,2;δ, 1) modelling are given.

2.1 Stationary Data

The GDP of Malaysia was obtained from the official website of Department of
Statistics Malaysia, National Accounts, consisting of yearly observations from 1955
to 2009. Figure 1 shows the time series plot of the GDP of Malaysia from 1955 to
2009 and it is quite apparent that it is a nonstationary time series. Many observed



time series, however, are not stationary. In particular, most economic and business
series exhibit time-changing levels and/or variances (Abraham and Ledolter (1983)).
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Figure 1: GDP per capita of Malaysia from 1955 to 2009
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Figure 2: GDP per capita of Malaysia which was twice differenced at lag 1 and
mean corrected

In order to achieve stationarity, the data set was twice-differenced at lag 1 and
mean corrected and a plot of this is depicted in Figure 2 and it can be written as
Yt = (1−B)(1−B)(Xt − 52.7925).



Then the computer programs were written to model the GDP per capita of Malaysia
using ARMA (1, 1) and GARMA(1, 2;δ, 1) model.

2.2 ARMA(1, 1)

The objective of this section is to illustrate the modelling of the GDP data of Malaysia
using ARMA(1, 1). The preliminary estimation of the parameters of this model
has been done using the Hannan-Rissanen Algorithm Estimator. We fit a standard
ARMA(1, 1) model for the differenced data and the following results were obtained.

The Hannan-Rissanen Algorithm estimation is obtained for the ARMA(1, 1)
model and the fitted model is(1 − 0.2091B)Yt = (1 − 0.4938B)Zt, whereZt ∼
WN(0, 884910). On the other hand, the ARMA(1, 1) fitted models are,(1 −
0.2923B)Yt = (1− 0.3488B)Zt, whereZt ∼ WN(0, 66132), by the Whittle’s esti-
mation method and(1−0.9830B)Yt = (1+0.0103B)Zt, whereZt ∼ WN(0, 884910),
by the Maximum Likelihood Estimation method.

Using the above fitted models, point forecasts for the GDP data set for the next
six time periods are shown in Table 1. The point forecasts obtained from MLE
method gives the best answer.

Table 1: Actual and forecast values for GDP data using ARMA (1, 1) Model
Step Actual Forecast value Forecast value Forecast value

value using HRA using WE using MLE
1 18531 4446 1214 16448
2 19996 4940 1334 18238
3 21563 5320 1446 19675
4 23544 5738 1560 21217
5 26639 6270 1700 23169
6 23826 7111 1907 26222

2.3 GARMA(1, 2; δ, 1)

GARMA(1, 2; δ, 1) model was fitted to the GDP data set that has been differenced
and mean corrected. The Hannan-Rissanen Algorithm estimation is obtained for
the GARMA(1, 2; δ, 1) model and the fitted model is(1 − 0.9237B)0.9237Yt =
(1 − 0.1443B + 0.9521B2)Zt whereZt ∼ WN(0, 1827225). On the other hand,
the GARMA(1, 2;δ, 1) fitted model is,(1 − 0.9920B)0.2468Yt = (1 − 0.3845B −
0.0604B2)Zt whereZt ∼ WN(0, 12943), by the Whittle’s estimation The GARMA(1,
2; δ, 1) fitted model is,(1−0.8665B)0.9982Yt = (1+0.0012B+0.0004B2)Zt, where
Zt ∼ WN(0, 1827225), by the Maximum Likelihood Estimation method.

Using the above fitted models, point forecasts for the GDP data set for the next
six time periods are shown in Table 2. It can be seen from Table 2 that all the point
forecasted values through HRA and MLE estimation give a closer reading to the
actual values compared to WE estimation. GARMA(1, 2;δ, 1) results are closer to
the true values than the traditional ARMA (1, 1) model.



Table 2: Actual and forecast values for GDP data using GARMA(1, 2;δ, 1)
Step Actual Forecast value Forecast value Forecast value

value using HRA using WE using MLE
1 18531 16538 14342 16553
2 19996 18238 15368 18264
3 21563 19738 16502 19762
4 23544 21295 17741 21320
5 26639 23214 19162 23244
6 23826 26136 20993 26181

3 Conclusion

The objective of our study was to compare the performance of ARMA (1, 1) and
GARMA(1, 2; δ, 1). In addition, we have evaluated the performance of the three
estimators based on HRA, WE and MLE. It appears from this study, that the MLE
estimation procedure is relatively good for ARMA (1, 1). HRA and MLE estimation
give a closer reading to the actual values compared to WE estimation for GARMA
(1, 2; δ, 1) model. GARMA (1, 2;δ, 1) performs better than ARMA (1, 1) for all
the estimation methods. We have successfully illustrated the superiority, usefulness
and applicability of the GARMA (1, 2;δ, 1) model using the GDP data set.
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