

# 6<sup>th</sup> Malaysia Statistics Conference 19 November 2018

Sasana Kijang, Bank Negara Malaysia

Embracing Data Science and Analytics to Strengthen
Evidence-Based Decision Making

2018

# Application of Big Data and Machine Learning in Bioinformatics



Azian Azamimi Abdullah School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP)



## Introduction



- o Big data → data sets that are too large or complex for traditional data-processing or statistical application software
- o Machine learning → Subfield of computer science, application of artificial intelligence (AI), provides systems the ability to automatically learn from experience
- o Unsupervised and supervised learning
- o Applications: Healthcare, bioinformatics, robotics, data security, financial market analysis, translation



## **Our Study**

- o Cervical Cancer
- Second most common cancer
- Caused by human papillomavirus (HPV)
- Left untreated, cervical cancer developed
- Lead to life-threatening but potentially curable

Microarray Gene Expression Profiling →To interpret and analyze the genes expression state in complementary DNA prepared from mRNA in which the hybridization is taking place on the array







### **Problem Statement**

- Classification and detection of cervical cancer among large community has been challenging task
- Cervical cancer is detected by PAP Smear test which has limited sensitivity to detect the early development of cervical cancerous cell
- But by using gene expression profiling data, it has a better sensitivity to detect the early development of cervical cancer
- Hence, predictive model is important



## **Objectives**

- To extract the important features from cervical cancer gene expression profiling data
- To classify groups or clusters of similar genes using unsupervised machine learning (ML)
- To develop predictive models for cervical cancer by using supervised machine learning (ML)



## Scopes



- Dataset: Gynecologic Oncology Group Tissue Bank (PA, USA) & Kaggle database website
- Dataset containing gene expression profiling data in order to detect whether they are pre-cancerous or cancerous cervical cells
- Data is extracted to get the important features
- Unsupervised ML: hierarchical clustering & principal components analysis (PCA)
- Supervised ML: support vector machine (SVM) & Random Forest (RF)



## Methodology

#### Dataset Description:

- ✓ Gene expression profiling data
- √ Tumor and matched normal samples
- ✓ Raw read counts from the sequencing of microRNA
- √58 samples data with 714 features
- ✓ Row: microRNA features
- ✓ Column: 29 Normal (N), 29 Tumor (T)

R statistical computing environment





#### Samples Data [Normal (N): 29, Tumor (T): 29]

| •  | ID ‡      | N1 <sup>‡</sup> | N2 <sup>‡</sup> | N3 <sup>‡</sup> | N4 <sup>‡</sup> | N5 <sup>‡</sup> | N6 <sup>‡</sup> | N7 <sup>‡</sup> | N8 <sup>‡</sup> | N9 <sup>‡</sup> | N10 <sup>‡</sup> | N11 <sup>‡</sup> | N12 <sup>‡</sup> | N13 <sup>‡</sup> | N14 <sup>‡</sup> | N15 <sup>‡</sup> | N16 <sup>‡</sup> | N17 <sup>‡</sup> | N18 <sup>‡</sup> | N19 <sup>‡</sup> | N20 <sup>‡</sup> | N21 <sup>‡</sup> | N22 ° | N23 <sup>‡</sup> | N24 <sup>‡</sup> | N25 |
|----|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------|------------------|------------------|-----|
| 1  | let-7a    | 865             | 810             | 5505            | 6692            | 1456            | 588             | 9               | 4513            | 1962            | 10167            | 4113             | 2610             | 5008             | 580              | 667              | 6731             | 3671             | 3276             | 4910             | 5876             | 3877             | 7516  | 4930             | 3755             | A   |
| 2  | let-7a*   | 3               | 12              | 30              | 73              | 6               | 2               | 0               | 199             | 10              | 173              | 30               | 105              | 71               | 21               | 7                | 738              | 1051             | 476              | 568              | 643              | 175              | 767   | 48               | 76               |     |
| 3  | let-7b    | 975             | 2790            | 4912            | 24286           | 1759            | 508             | 33              | 6162            | 1455            | 18110            | 8862             | 12481            | 21641            | 8320             | 918              | 43582            | 33730            | 40209            | 80226            | 55768            | 31744            | 71032 | 5486             | 6932             |     |
| 4  | let-7b*   | 15              | 18              | 27              | 119             | 11              | 3               | 0               | 116             | 17              | 233              | 40               | 180              | 288              | 63               | 12               | 468              | 479              | 396              | 470              | 686              | 129              | 673   | 65               | 83               |     |
| 5  | let-7c    | 828             | 1251            | 2973            | 6413            | 713             | 339             | 23              | 2002            | 476             | 3294             | 5929             | 1816             | 3278             | 573              | 303              | 4670             | 2203             | 3096             | 5162             | 4537             | 3217             | 5675  | 1411             | 3477             |     |
| 6  | let-7c*   | 0               | 0               | 0               | 1               | 0               | 0               | 0               | 3               | 0               | 3                | 0                | 0                | 3                | 0                | 0                | 20               | 2                | 6                | 1                | 18               | 6                | 11    | 1                | 5                |     |
| 7  | let-7d    | 71              | 98              | 364             | 1890            | 188             | 47              | 1               | 719             | 204             | 1425             | 507              | 621              | 1078             | 1447             | 35               | 3154             | 2124             | 1684             | 5535             | 2000             | 12669            | 4874  | 380              | 365              |     |
| 8  | let-7d*   | 3               | 24              | 8               | 41              | 8               | 2               | 0               | 38              | 18              | 77               | 19               | 88               | 187              | 36               | 20               | 287              | 222              | 242              | 294              | 264              | 73               | 250   | 40               | 51               |     |
| 9  | let-7e    | 169             | 151             | 788             | 5801            | 308             | 121             | 9               | 1912            | 204             | 2943             | 1089             | 3255             | 5768             | 1319             | 95               | 11765            | 8011             | 9964             | 21923            | 13716            | 4659             | 14414 | 972              | 1498             |     |
| 10 | let-7e*   | 0               | 1               | 1               | 7               | 1               | 0               | 0               | 14              | 1               | 4                | 9                | 10               | 22               | 3                | 1                | 68               | 65               | 38               | 42               | 84               | 8                | 78    | 5                | 5                |     |
| 11 | let-7f    | 569             | 192             | 3497            | 14486           | 1134            | 358             | 1               | 4252            | 1148            | 8014             | 5765             | 5662             | 6324             | 2699             | 402              | 23502            | 24312            | 17660            | 37513            | 12618            | 19134            | 28917 | 3860             | 2423             |     |
| 12 | let-7f-1* | 1               | 1               | 1               | 18              | 8               | 0               | 0               | 45              | 1               | 35               | 11               | 25               | 31               | 11               | 4                | 277              | 302              | 97               | 205              | 147              | 39               | 167   | 8                | 27               |     |
| 13 | let-7f-2* | 0               | 1               | 2               | 3               | 1               | 0               | 0               | 7               | 0               | 4                | 6                | 7                | 3                | 2                | 0                | 24               | 41               | 16               | 17               | 20               | 8                | 47    | 2                | 1                |     |
| 14 | let-7g    | 447             | 173             | 1922            | 4062            | 493             | 124             | 8               | 1045            | 421             | 2086             | 1704             | 2392             | 1295             | 832              | 57               | 4097             | 6926             | 5677             | 8095             | 3468             | 5823             | 7199  | 1323             | 610              |     |
| 15 | let-7g*   | 0               | 0               | 2               | 4               | 1               | 0               | 0               | 2               | 0               | 2                | 2                | 2                | 6                | 1                | 0                | 18               | 19               | 14               | 23               | 9                | 0                | 34    | 3                | 1                |     |
| 16 | let-7i    | 241             | 304             | 912             | 3867            | 447             | 89              | 7               | 639             | 386             | 1651             | 2958             | 3507             | 4983             | 2923             | 201              | 5654             | 5481             | 8877             | 11665            | 3662             | 3655             | 5080  | 602              | 738              |     |
| 17 | let-7i*   | 1               | 6               | 4               | 18              | 8               | 2               | 0               | 15              | 4               | 23               | 7                | 92               | 74               | 22               | 1                | 85               | 101              | 94               | 110              | 54               | 9                | 66    | 7                | 21               |     |
| 18 | miR-1     | 151             | 71              | 352             | 3835            | 127             | 36              | 0               | 409             | 15              | 674              | 1046             | 1585             | 1713             | 199              | 1224             | 4498             | 7328             | 3462             | 11508            | 1345             | 255              | 3989  | 294              | 447              |     |
| 19 | miR-100   | 233             | 169             | 686             | 351             | 54              | 12              | 41              | 425             | 17              | 429              | 88               | 304              | 537              | 819              | 9                | 969              | 1337             | 1122             | 902              | 1695             | 5285             | 2893  | 364              | 268              |     |
| 20 | miR-100*  | 0               | 0               | 1               | 0               | 0               | 0               | 0               | 0               | 0               | 0                | 0                | 0                | 0                | 0                | 1                | 0                | 2                | 2                | 0                | 0                | 2                | 7     | 0                | 0                |     |
| 21 | miR-101   | 159             | 270             | 809             | 807             | 162             | 76              | 13              | 356             | 147             | 383              | 586              | 1462             | 317              | 522              | 17               | 573              | 2641             | 1622             | 1783             | 1120             | 1110             | 2397  | 547              | 137              |     |
| 22 | miR-101*  | 3               | 9               | 33              | 26              | 7               | 11              | 0               | 6               | 3               | 7                | 4                | 37               | 23               | 12               | 0                | 32               | 78               | 35               | 29               | 59               | 14               | 105   | 10               | 15               | Ŧ   |

Features of Sequencing of

Showing 1 to 23 of 714 entries



#### Data Pre-processing

- Unreliable and redundant of data and noise present in dataset

Data Cleaning

Data Scaling

Normalization of Data



### **Unsupervised Machine Learning**

#### Hierarchical Clustering (Heatmap)

- Implemented to create the hierarchical
- By measuring the similarities between features of the gene expression profiles

#### Principle Component Analysis (PCA)

- Reduce the dimensionality
- Collapse the hundreds of features into a smaller set of principal components



## **Supervised Machine Learning (SVM and RF)**

- Support Vector Machine (SVM)
- Maximize the accuracy of the predictions while avoiding over-fit to the sample data
- Random Forest (RF)
- Ensemble learning method that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification)
- Training and testing the sample data (70% train, 30% test)



### **Evaluation of Model Performance**

% Accuracy
$$= \frac{(TP + TN)}{(TP + FP + FN + TN)} \times 100$$



#### Predicted class



% Specificity = 
$$\frac{TN}{TN+FP}$$
 x 100



#### **Results and Discussion**

| _  | dx ÷   | miRNA ÷ | counts <sup>‡</sup> |
|----|--------|---------|---------------------|
| 1  | Normal | letz7a  | 865                 |
| 2  | Normal | letz7a  | 810                 |
| 3  | Normal | letz7a  | 5505                |
| 4  | Normal | letz7a  | 6692                |
| 5  | Normal | letz7a  | 1456                |
| 6  | Normal | letz7a  | 588                 |
| 7  | Normal | letz7a  | 9                   |
| 8  | Normal | letz7a  | 4513                |
| 9  | Normal | letz7a  | 1962                |
| 10 | Normal | letz7a  | 10167               |
| 11 | Normal | letz7a  | 4113                |
| 12 | Normal | letz7a  | 2610                |
| 13 | Normal | letz7a  | 5008                |
| 14 | Normal | letz7a  | 580                 |
| 15 | Normal | letz7a  | 667                 |
| 16 | Normal | letz7a  | 6731                |
| 17 | Normal | letz7a  | 3671                |
| 18 | Normal | letz7a  | 3276                |
| 19 | Normal | letz7a  | 4910                |
| 20 | Normal | letz7a  | 5876                |
| 21 | Normal | letz7a  | 3877                |
| 22 | Normal | letz7a  | 7516                |

#### Data Pre-Processing:

- ✓ Unreliable data are removed
- ✓ Final dataset is used
- ✓ Also wide form of data change into long form
- ✓ Used in the next process





# Hierarchical Clustering (Heatmap)

- Heatmap is a graphical representation of the gene expression profiles data of cervical that illustrated as colors range in a map
- By calculating the pairwise distance between all of the data
- ✓ Orange: Low level, White: High level





#### **Principle Component Analysis (PCA)**

- ✓ Scree plot is a histogram that shows eigenvalues of each principal components (PC)
- ✓ Determine number of PC needed to summaries the dataset
- ✓ Based on scree plot, value of variances decreases dramatically after the first principal components (elbow)
- ✓ Hence, only one PC is sufficient to summarize the dataset



#### **Results (SVM)**

|           |           | Refei         | rence     |
|-----------|-----------|---------------|-----------|
|           |           | Normal<br>(0) | Tumor (I) |
| Predictio | Normal    | 7             | I.        |
| n         | (0)       |               |           |
|           | Tumor (I) | I             | 7         |

Accuracy : 0.875

95% CI : (0.6165, 0.9845)

No Information Rate: 0.5

P-Value [Acc > NIR] : 0.00209

Kappa : 0.75

Mcnemar's Test P-Value : 1.00000

Sensitivity: 0.8750 Specificity: 0.8750

Pos Pred Value : 0.8750

Neg Pred Value : 0.8750

Prevalence : 0.5000

Detection Rate : 0.4375

Detection Prevalence : 0.5000

Balanced Accuracy: 0.8750

'Positive' Class: 0



#### **Results (RF)**

|                |               | Refei         | rence     |
|----------------|---------------|---------------|-----------|
|                |               | Normal<br>(0) | Tumor (I) |
| Predictio<br>n | Normal<br>(0) | 10            | I         |
|                | Tumor (I)     | 0             | 6         |

Accuracy: 0.9412

95% CI : (0./131, 0.9985)

No Information Rate : 0.5882 P-Value [Acc > NIR] : 0.001559

Kappa: 0.8759

Mcnemar's Test P-Value : 1.000000

Sensitivity: 1.0000 Specificity: 0.8571

Neg Pred Value : 0.9091

Prevalence: 0.5882 Detection Rate: 0.5882

Detection Prevalence : 0.6471

Balanced Accuracy : 0.9286

'Positive' Class : 0



## **Comparison Between SVM and RF**

|             | Support Vector | Random       |
|-------------|----------------|--------------|
|             | Machine (SVM)  | Forests (RF) |
| Accuracy    | 87.5%          | 94.12%       |
| Kappa value | 0.75           | 0.8759       |
| Sensitivity | 0.8750         | 1.0000       |
| Specificity | 0.8750         | 0.8571       |



## **Variables Importance**

Variables

Top 10 - Variable Importance



miR. 205  $\rightarrow$  Has a role in both normal

| Valiables   | i ican    |
|-------------|-----------|
| Importance  | Decrease  |
|             | Accuracy  |
|             | (MDA)     |
| miR. 205    | 3.9691943 |
| 11111X. 203 | 3         |
| miR. 10b.   | 3.5740697 |
| IIIIK. 100. | 8         |
| miR. 514    | 3.4324209 |
| דוכ.אוווו   | 3         |
| miR 133a    | 2.9811641 |
| mik 155a    | 7         |
| miR. 133b   | 2.9694714 |
| 111IN. 133D | 5         |
| :D 407      | 2.8843959 |
| miR. 497    | 5         |

Aldosterone System, 17(3), 1470320316663327, 2.8443135

2 7949299

miR. 944

Mean

**Variables** Gini (MDG) **Importance** miR. 205 0.462774856 Candidate. 0.462649239 0.434711805 miR. 10b. miR. 514 0.367938989 0.362193567 miR.133a miR. 133b 0.354346809 \*Yue, Z. Yun-shan, Z2.8568230X. (2016). miB-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan. Journal of the Renn-Angiotensin-

miR. 497

Mean Decrease

0.315540508

development and cancer\*



### **Conclusions**

- Random Forests (RF) machine learning algorithms can be successfully used for predicting cervical cancer based on the gene expression profiling data with the microarray dataset
- Model's accuracy obtained is 94.12% which may be acceptable in many applications
- o MicroRNA-205 as a novel biomarker for cervical cancer patients
- Big data & machine learning algorithms could be useful in bioinformatics or any other fields



